Novel Multi-layer Non-negative Tensor Factorization with Sparsity Constraints
نویسندگان
چکیده
In this paper we present a new method of 3D non-negative tensor factorization (NTF) that is robust in the presence of noise and has many potential applications, including multi-way blind source separation (BSS), multi-sensory or multi-dimensional data analysis, and sparse image coding. We consider alphaand beta-divergences as error (cost) functions and derive three different algorithms: (1) multiplicative updating; (2) fixed point alternating least squares (FPALS); (3) alternating interior-point gradient (AIPG) algorithm. We also incorporate these algorithms into multilayer networks. Experimental results confirm the very useful behavior of our multilayer 3D NTF algorithms with multi-start initializations. 1 Models and Problem Formulation Tensors (also known as n-way arrays or multidimensional arrays) are used in a variety of applications ranging from neuroscience and psychometrics to chemometrics [1–4]. Nonnegative matrix factorization (NMF), Non-negative tensor factorization (NTF), parallel factor analysis PARAFAC and TUCKER models with non-negativity constraints have been recently proposed as promising sparse and quite efficient representations of signals, images, or general data [1–14]. From a viewpoint of data analysis, NTF is very attractive because it takes into account spacial and temporal correlations between variables more accurately than 2D matrix factorizations, such as NMF, and it provides usually sparse common factors or hidden (latent) components with physical or physiological meaning and interpretation [4]. One of our motivations is to develop flexible NTF algorithms which can be applied in neuroscience (analysis of EEG, fMRI) [8, 15, 16]. The basic 3D NTF model considered in this paper is illustrated in Fig. 1 (see also [9]). A given tensor X ∈ RI×T×K + is decomposed as a set of matrices A ∈ ? On leave from Warsaw University of Technology, Dept. of EE, Warsaw, POLAND ?? On leave from Institute of Telecommunications, Teleinformatics and Acoustics, Wroclaw University of Technology, POLAND 2 A. Cichocki et al.
منابع مشابه
Hierarchical ALS Algorithms for Nonnegative Matrix and 3D Tensor Factorization
In the paper we present new Alternating Least Squares (ALS) algorithms for Nonnegative Matrix Factorization (NMF) and their extensions to 3D Nonnegative Tensor Factorization (NTF) that are robust in the presence of noise and have many potential applications, including multi-way Blind Source Separation (BSS), multi-sensory or multi-dimensional data analysis, and nonnegative neural sparse coding....
متن کاملControlling Sparseness in Non-negative Tensor Factorization
Non-negative tensor factorization (NTF) has recently been proposed as sparse and efficient image representation (Welling and Weber, Patt. Rec. Let., 2001). Until now, sparsity of the tensor factorization has been empirically observed in many cases, but there was no systematic way to control it. In this work, we show that a sparsity measure recently proposed for non-negative matrix factorization...
متن کاملA Novel Non-Negative Matrix Factorization Method for Recommender Systems
Recommender systems collect various kinds of data to create their recommendations. Collaborative filtering is a common technique in this area. This technique gathers and analyzes information on users preferences, and then estimates what users will like based on their similarity to other users. However, most of current collaborative filtering approaches have faced two problems: sparsity and scal...
متن کاملIterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کامل`2,1 Norm and Hessian Regularized Non-Negative Matrix Factorization with Discriminability for Data Representation
Matrix factorization based methods have widely been used in data representation. Among them, Non-negative Matrix Factorization (NMF) is a promising technique owing to its psychological and physiological interpretation of spontaneously occurring data. On one hand, although traditional Laplacian regularization can enhance the performance of NMF, it still suffers from the problem of its weak extra...
متن کامل